Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
head1(cons2(X, XS)) -> X
2nd1(cons2(X, XS)) -> head1(activate1(XS))
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
from1(X) -> n__from1(X)
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__take2(X1, X2)) -> take2(X1, X2)
activate1(X) -> X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
head1(cons2(X, XS)) -> X
2nd1(cons2(X, XS)) -> head1(activate1(XS))
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
from1(X) -> n__from1(X)
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__take2(X1, X2)) -> take2(X1, X2)
activate1(X) -> X

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACTIVATE1(n__take2(X1, X2)) -> TAKE2(X1, X2)
TAKE2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)
SEL2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)
SEL2(s1(N), cons2(X, XS)) -> SEL2(N, activate1(XS))
2ND1(cons2(X, XS)) -> HEAD1(activate1(XS))
ACTIVATE1(n__from1(X)) -> FROM1(X)
2ND1(cons2(X, XS)) -> ACTIVATE1(XS)

The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
head1(cons2(X, XS)) -> X
2nd1(cons2(X, XS)) -> head1(activate1(XS))
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
from1(X) -> n__from1(X)
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__take2(X1, X2)) -> take2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE1(n__take2(X1, X2)) -> TAKE2(X1, X2)
TAKE2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)
SEL2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)
SEL2(s1(N), cons2(X, XS)) -> SEL2(N, activate1(XS))
2ND1(cons2(X, XS)) -> HEAD1(activate1(XS))
ACTIVATE1(n__from1(X)) -> FROM1(X)
2ND1(cons2(X, XS)) -> ACTIVATE1(XS)

The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
head1(cons2(X, XS)) -> X
2nd1(cons2(X, XS)) -> head1(activate1(XS))
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
from1(X) -> n__from1(X)
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__take2(X1, X2)) -> take2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 2 SCCs with 4 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE1(n__take2(X1, X2)) -> TAKE2(X1, X2)
TAKE2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)

The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
head1(cons2(X, XS)) -> X
2nd1(cons2(X, XS)) -> head1(activate1(XS))
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
from1(X) -> n__from1(X)
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__take2(X1, X2)) -> take2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVATE1(n__take2(X1, X2)) -> TAKE2(X1, X2)
The remaining pairs can at least be oriented weakly.

TAKE2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)
Used ordering: Polynomial interpretation [21]:

POL(ACTIVATE1(x1)) = x1   
POL(TAKE2(x1, x2)) = 2·x2   
POL(cons2(x1, x2)) = 2·x2   
POL(n__take2(x1, x2)) = 2 + 2·x2   
POL(s1(x1)) = 2   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ DependencyGraphProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TAKE2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)

The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
head1(cons2(X, XS)) -> X
2nd1(cons2(X, XS)) -> head1(activate1(XS))
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
from1(X) -> n__from1(X)
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__take2(X1, X2)) -> take2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 0 SCCs with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

SEL2(s1(N), cons2(X, XS)) -> SEL2(N, activate1(XS))

The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
head1(cons2(X, XS)) -> X
2nd1(cons2(X, XS)) -> head1(activate1(XS))
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
from1(X) -> n__from1(X)
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__take2(X1, X2)) -> take2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


SEL2(s1(N), cons2(X, XS)) -> SEL2(N, activate1(XS))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(0) = 2   
POL(SEL2(x1, x2)) = 2·x1 + x2   
POL(activate1(x1)) = 2 + x1   
POL(cons2(x1, x2)) = 1 + 2·x2   
POL(from1(x1)) = 1   
POL(n__from1(x1)) = 0   
POL(n__take2(x1, x2)) = 0   
POL(nil) = 0   
POL(s1(x1)) = 2 + x1   
POL(take2(x1, x2)) = 2   

The following usable rules [14] were oriented:

activate1(n__take2(X1, X2)) -> take2(X1, X2)
take2(X1, X2) -> n__take2(X1, X2)
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
from1(X) -> n__from1(X)
activate1(n__from1(X)) -> from1(X)
from1(X) -> cons2(X, n__from1(s1(X)))
activate1(X) -> X



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
head1(cons2(X, XS)) -> X
2nd1(cons2(X, XS)) -> head1(activate1(XS))
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
from1(X) -> n__from1(X)
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__take2(X1, X2)) -> take2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.